Class that extends VectorStore to store vectors in memory. Provides methods for adding documents, performing similarity searches, and creating instances from texts, documents, or an existing index.

Hierarchy

Constructors

Properties

FilterType: ((doc) => boolean)

Type declaration

    • (doc): boolean
    • Parameters

      Returns boolean

embeddings: Embeddings
lc_kwargs: SerializedFields
lc_namespace: string[] = ...

A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

lc_serializable: boolean = false
memoryVectors: MemoryVector[] = []
similarity: ((a, b) => number)

Type declaration

    • (a, b): number
    • Returns the average of cosine distances between vectors a and b

      Parameters

      • a: NumberArray

        first vector

      • b: NumberArray

        second vector

      Returns number

Accessors

  • get lc_aliases(): undefined | {
        [key: string]: string;
    }
  • A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

    Returns undefined | {
        [key: string]: string;
    }

  • get lc_attributes(): undefined | SerializedFields
  • A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

    Returns undefined | SerializedFields

  • get lc_secrets(): undefined | {
        [key: string]: string;
    }
  • A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

    Returns undefined | {
        [key: string]: string;
    }

Methods

  • Method to add documents to the memory vector store. It extracts the text from each document, generates embeddings for them, and adds the resulting vectors to the store.

    Parameters

    • documents: Document<Record<string, any>>[]

      Array of Document instances to be added to the store.

    Returns Promise<void>

    Promise that resolves when all documents have been added.

  • Method to add vectors to the memory vector store. It creates MemoryVector instances for each vector and document pair and adds them to the store.

    Parameters

    • vectors: number[][]

      Array of vectors to be added to the store.

    • documents: Document<Record<string, any>>[]

      Array of Document instances corresponding to the vectors.

    Returns Promise<void>

    Promise that resolves when all vectors have been added.

  • Method to perform a similarity search in the memory vector store. It calculates the similarity between the query vector and each vector in the store, sorts the results by similarity, and returns the top k results along with their scores.

    Parameters

    • query: number[]

      Query vector to compare against the vectors in the store.

    • k: number

      Number of top results to return.

    • Optional filter: ((doc) => boolean)

      Optional filter function to apply to the vectors before performing the search.

        • (doc): boolean
        • Parameters

          Returns boolean

    Returns Promise<[Document<Record<string, any>>, number][]>

    Promise that resolves with an array of tuples, each containing a Document and its similarity score.

  • Static method to create a MemoryVectorStore instance from an array of Document instances. It adds the documents to the store.

    Parameters

    • docs: Document<Record<string, any>>[]

      Array of Document instances to be added to the store.

    • embeddings: Embeddings

      Embeddings instance used to generate embeddings for the documents.

    • Optional dbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.

  • Static method to create a MemoryVectorStore instance from an existing index. It creates a new MemoryVectorStore instance without adding any documents or vectors.

    Parameters

    • embeddings: Embeddings

      Embeddings instance used to generate embeddings for the documents.

    • Optional dbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.

  • Static method to create a MemoryVectorStore instance from an array of texts. It creates a Document for each text and metadata pair, and adds them to the store.

    Parameters

    • texts: string[]

      Array of texts to be added to the store.

    • metadatas: object | object[]

      Array or single object of metadata corresponding to the texts.

    • embeddings: Embeddings

      Embeddings instance used to generate embeddings for the texts.

    • Optional dbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.

  • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

    Implemented as a static method to support loading logic.

    Returns string

Generated using TypeDoc