Specific implementation of a Large Language Model (LLM) designed to interact with the Aleph Alpha API. It extends the base LLM class and includes a variety of parameters for customizing the behavior of the Aleph Alpha model.

Hierarchy

  • LLM
    • AlephAlpha

Implements

Constructors

Properties

Accessors

Methods

Constructors

Properties

CallOptions: BaseLLMCallOptions
ParsedCallOptions: Omit<BaseLLMCallOptions, never>
base_url: string = "https://api.aleph-alpha.com/complete"
caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

completion_bias_exclusion_first_token_only: boolean
completion_bias_inclusion_first_token_only: boolean
control_log_additive: boolean
echo: boolean
lc_kwargs: SerializedFields
lc_namespace: string[] = ...

A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

lc_serializable: boolean = false
maximum_tokens: number = 64
minimum_tokens: number = 0
model: string = "luminous-base"
raw_completion: boolean
temperature: number = 0.0
top_k: number
top_p: number = 0.0
verbose: boolean

Whether to print out response text.

aleph_alpha_api_key?: string = ...
best_of?: number
callbacks?: Callbacks
completion_bias_exclusion?: string[]
completion_bias_inclusion?: string[]
contextual_control_threshold?: number
disable_optimizations?: boolean
frequency_penalty?: number
log_probs?: number
logit_bias?: object
metadata?: Record<string, unknown>
n?: number
penalty_bias?: string
penalty_exceptions?: string[]
penalty_exceptions_include_stop_sequences?: boolean
presence_penalty?: number
repetition_penalties_include_completion?: boolean
repetition_penalties_include_prompt?: boolean
sequence_penalty?: number
sequence_penalty_min_length?: number
stop?: string[]
tags?: string[]
tokens?: boolean
use_multiplicative_frequency_penalty?: boolean
use_multiplicative_presence_penalty?: boolean
use_multiplicative_sequence_penalty?: boolean
lc_runnable: boolean = true

Accessors

  • get defaultParams(): {
        best_of: undefined | number;
        completion_bias_exclusion: undefined | string[];
        completion_bias_exclusion_first_token_only: boolean;
        completion_bias_inclusion: undefined | string[];
        completion_bias_inclusion_first_token_only: boolean;
        contextual_control_threshold: undefined | number;
        control_log_additive: boolean;
        disable_optimizations: undefined | boolean;
        frequency_penalty: undefined | number;
        log_probs: undefined | number;
        logit_bias: undefined | object;
        maximum_tokens: number;
        minimum_tokens: number;
        model: string;
        n: undefined | number;
        penalty_bias: undefined | string;
        penalty_exceptions: undefined | string[];
        penalty_exceptions_include_stop_sequences: undefined | boolean;
        presence_penalty: undefined | number;
        raw_completion: boolean;
        repetition_penalties_include_completion: undefined | boolean;
        repetition_penalties_include_prompt: undefined | boolean;
        sequence_penalty: undefined | number;
        sequence_penalty_min_length: undefined | number;
        temperature: number;
        tokens: undefined | boolean;
        top_k: number;
        top_p: number;
        use_multiplicative_frequency_penalty: undefined | boolean;
        use_multiplicative_presence_penalty: undefined | boolean;
        use_multiplicative_sequence_penalty: undefined | boolean;
    }
  • Get the default parameters for calling Aleph Alpha API.

    Returns {
        best_of: undefined | number;
        completion_bias_exclusion: undefined | string[];
        completion_bias_exclusion_first_token_only: boolean;
        completion_bias_inclusion: undefined | string[];
        completion_bias_inclusion_first_token_only: boolean;
        contextual_control_threshold: undefined | number;
        control_log_additive: boolean;
        disable_optimizations: undefined | boolean;
        frequency_penalty: undefined | number;
        log_probs: undefined | number;
        logit_bias: undefined | object;
        maximum_tokens: number;
        minimum_tokens: number;
        model: string;
        n: undefined | number;
        penalty_bias: undefined | string;
        penalty_exceptions: undefined | string[];
        penalty_exceptions_include_stop_sequences: undefined | boolean;
        presence_penalty: undefined | number;
        raw_completion: boolean;
        repetition_penalties_include_completion: undefined | boolean;
        repetition_penalties_include_prompt: undefined | boolean;
        sequence_penalty: undefined | number;
        sequence_penalty_min_length: undefined | number;
        temperature: number;
        tokens: undefined | boolean;
        top_k: number;
        top_p: number;
        use_multiplicative_frequency_penalty: undefined | boolean;
        use_multiplicative_presence_penalty: undefined | boolean;
        use_multiplicative_sequence_penalty: undefined | boolean;
    }

    • best_of: undefined | number
    • completion_bias_exclusion: undefined | string[]
    • completion_bias_exclusion_first_token_only: boolean
    • completion_bias_inclusion: undefined | string[]
    • completion_bias_inclusion_first_token_only: boolean
    • contextual_control_threshold: undefined | number
    • control_log_additive: boolean
    • disable_optimizations: undefined | boolean
    • frequency_penalty: undefined | number
    • log_probs: undefined | number
    • logit_bias: undefined | object
    • maximum_tokens: number
    • minimum_tokens: number
    • model: string
    • n: undefined | number
    • penalty_bias: undefined | string
    • penalty_exceptions: undefined | string[]
    • penalty_exceptions_include_stop_sequences: undefined | boolean
    • presence_penalty: undefined | number
    • raw_completion: boolean
    • repetition_penalties_include_completion: undefined | boolean
    • repetition_penalties_include_prompt: undefined | boolean
    • sequence_penalty: undefined | number
    • sequence_penalty_min_length: undefined | number
    • temperature: number
    • tokens: undefined | boolean
    • top_k: number
    • top_p: number
    • use_multiplicative_frequency_penalty: undefined | boolean
    • use_multiplicative_presence_penalty: undefined | boolean
    • use_multiplicative_sequence_penalty: undefined | boolean
  • get identifyingParams(): {
        best_of: undefined | number;
        completion_bias_exclusion: undefined | string[];
        completion_bias_exclusion_first_token_only: boolean;
        completion_bias_inclusion: undefined | string[];
        completion_bias_inclusion_first_token_only: boolean;
        contextual_control_threshold: undefined | number;
        control_log_additive: boolean;
        disable_optimizations: undefined | boolean;
        frequency_penalty: undefined | number;
        log_probs: undefined | number;
        logit_bias: undefined | object;
        maximum_tokens: number;
        minimum_tokens: number;
        model: string;
        n: undefined | number;
        penalty_bias: undefined | string;
        penalty_exceptions: undefined | string[];
        penalty_exceptions_include_stop_sequences: undefined | boolean;
        presence_penalty: undefined | number;
        raw_completion: boolean;
        repetition_penalties_include_completion: undefined | boolean;
        repetition_penalties_include_prompt: undefined | boolean;
        sequence_penalty: undefined | number;
        sequence_penalty_min_length: undefined | number;
        temperature: number;
        tokens: undefined | boolean;
        top_k: number;
        top_p: number;
        use_multiplicative_frequency_penalty: undefined | boolean;
        use_multiplicative_presence_penalty: undefined | boolean;
        use_multiplicative_sequence_penalty: undefined | boolean;
    }
  • Get the identifying parameters for this LLM.

    Returns {
        best_of: undefined | number;
        completion_bias_exclusion: undefined | string[];
        completion_bias_exclusion_first_token_only: boolean;
        completion_bias_inclusion: undefined | string[];
        completion_bias_inclusion_first_token_only: boolean;
        contextual_control_threshold: undefined | number;
        control_log_additive: boolean;
        disable_optimizations: undefined | boolean;
        frequency_penalty: undefined | number;
        log_probs: undefined | number;
        logit_bias: undefined | object;
        maximum_tokens: number;
        minimum_tokens: number;
        model: string;
        n: undefined | number;
        penalty_bias: undefined | string;
        penalty_exceptions: undefined | string[];
        penalty_exceptions_include_stop_sequences: undefined | boolean;
        presence_penalty: undefined | number;
        raw_completion: boolean;
        repetition_penalties_include_completion: undefined | boolean;
        repetition_penalties_include_prompt: undefined | boolean;
        sequence_penalty: undefined | number;
        sequence_penalty_min_length: undefined | number;
        temperature: number;
        tokens: undefined | boolean;
        top_k: number;
        top_p: number;
        use_multiplicative_frequency_penalty: undefined | boolean;
        use_multiplicative_presence_penalty: undefined | boolean;
        use_multiplicative_sequence_penalty: undefined | boolean;
    }

    • best_of: undefined | number
    • completion_bias_exclusion: undefined | string[]
    • completion_bias_exclusion_first_token_only: boolean
    • completion_bias_inclusion: undefined | string[]
    • completion_bias_inclusion_first_token_only: boolean
    • contextual_control_threshold: undefined | number
    • control_log_additive: boolean
    • disable_optimizations: undefined | boolean
    • frequency_penalty: undefined | number
    • log_probs: undefined | number
    • logit_bias: undefined | object
    • maximum_tokens: number
    • minimum_tokens: number
    • model: string
    • n: undefined | number
    • penalty_bias: undefined | string
    • penalty_exceptions: undefined | string[]
    • penalty_exceptions_include_stop_sequences: undefined | boolean
    • presence_penalty: undefined | number
    • raw_completion: boolean
    • repetition_penalties_include_completion: undefined | boolean
    • repetition_penalties_include_prompt: undefined | boolean
    • sequence_penalty: undefined | number
    • sequence_penalty_min_length: undefined | number
    • temperature: number
    • tokens: undefined | boolean
    • top_k: number
    • top_p: number
    • use_multiplicative_frequency_penalty: undefined | boolean
    • use_multiplicative_presence_penalty: undefined | boolean
    • use_multiplicative_sequence_penalty: undefined | boolean
  • get lc_aliases(): undefined | {
        [key: string]: string;
    }
  • A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

    Returns undefined | {
        [key: string]: string;
    }

  • get lc_attributes(): undefined | {
        [key: string]: undefined;
    }
  • A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

    Returns undefined | {
        [key: string]: undefined;
    }

  • get lc_secrets(): undefined | {
        [key: string]: string;
    }
  • A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

    Returns undefined | {
        [key: string]: string;
    }

Methods

  • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

    Type Parameters

    Parameters

    • func: ((inputs, options?, runManagers?, batchOptions?) => Promise<(string | Error)[]>)

      The function to be executed for each input value.

    • inputs: T[]
    • Optional options: Partial<BaseLLMCallOptions & {
          runType?: string;
      }> | Partial<BaseLLMCallOptions & {
          runType?: string;
      }>[]
    • Optional batchOptions: RunnableBatchOptions

    Returns Promise<(string | Error)[]>

    A promise that resolves to the output values.

  • This method takes an input and options, and returns a string. It converts the input to a prompt value and generates a result based on the prompt.

    Parameters

    Returns Promise<string>

    A string result based on the prompt.

  • This method is similar to call, but it's used for making predictions based on the input text.

    Parameters

    • text: string

      Input text for the prediction.

    • Optional options: string[] | BaseLLMCallOptions

      Options for the LLM call.

    • Optional callbacks: Callbacks

      Callbacks for the LLM call.

    Returns Promise<string>

    A prediction based on the input text.

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<string, any, unknown>

  • Validates the environment by ensuring the necessary Aleph Alpha API key is available. Throws an error if the API key is missing.

    Returns void

  • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

    Implemented as a static method to support loading logic.

    Returns string

  • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

    Type Parameters

    Parameters

    • inputGenerator: AsyncGenerator<I, any, unknown>
    • transformer: ((generator, runManager?, options?) => AsyncGenerator<O, any, unknown>)
        • (generator, runManager?, options?): AsyncGenerator<O, any, unknown>
        • Parameters

          Returns AsyncGenerator<O, any, unknown>

    • Optional options: BaseLLMCallOptions & {
          runType?: string;
      }

    Returns AsyncGenerator<O, any, unknown>

Generated using TypeDoc